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Abstract In this paper, we evaluate the conventional con-
trast enhancement techniques [histogram equalization (HE),
adaptive HE] and the recent gray-level grouping method and
the fuzzy logic method in order to find out which of these is
well suited for automatic contrast enhancement for satellite
images of the ocean, obtained from a variety of sensors. All
the techniques evaluated were based on the principle of trans-
forming the skewed histogram of the original image into a
uniform histogram. The performance of the different contrast
enhancement algorithms are evaluated based on the visual
quality and the Tenengrad criterion. The inter comparison
of different techniques was carried out on a standard low-
contrast image and also three different satellite images with
different characteristics. Based on our study, we advocate
that a modified fuzzy logic method elucidated in this paper is
well suited for contrast enhancement of low-contrast satellite
images of the ocean.

M. S. Nair (B)
Rajagiri School of Computer Science,
Rajagiri College of Social Sciences, Kalamassery,
Kochi 683104, Kerala, India
e-mail: madhu_s_nair2001@yahoo.com

R. Lakshmanan
KMEA Engineering College, Aluva, Kerala, India
e-mail: rekhavibin@gmail.com

M. Wilscy
Department of Computer Science, University of Kerala,
Kariavattom, Trivandrum 695581, Kerala, India
e-mail: wilsyphilipose@hotmail.com

R. Tatavarti
Academic Research, VIT University,
Vellore 632014, Tamil Nadu, India
* GVP College of Engineering, Visakahapatnam
e-mail: rtatavarti@gmail.com

Keywords Contrast enhancement · Gray-level grouping ·
Histogram · Satellite images · Fuzzy · Entropy

1 Introduction

Contrast enhancement which is a fundamental subset of
image enhancement seeks to enhance the apparent visual
quality of an image as well as the specific image features
for further processing and analysis by a computer vision sys-
tem or for visual perception of human beings. Image contrast
is useful for segmentation and identification of objects and
features in a scene as edge points can be thought of as pixel
locations of abrupt gray level changes. The commonly used
techniques for contrast enhancement are (i) spatial domain
techniques—involving convolutions with high-pass  filter
masks, un sharp masking, inverse contrast ratio masking,
local adaptive contrast enhancement and histogram transfor-
mations; and, (ii) frequency domain techniques involving—
filtering through the manipulation of Fourier transforms,
Weiner filters, homomorphic filters [1–10]. Although, the
techniques of contrast enhancement perform quite well with
images having a uniform spatial distribution of gray values,
difficulties arise when the object to be recognized and the
background assume a broad range of gray tones or when the
background has a non-uniform distribution of brightness, as
is common in satellite images covering land and ocean. Dis-
play systems and satellite images having low contrast with
weak edges pose challenges in the fields of computer vision
and pattern recognition. Extraction of these weak edges needs
an efficient tool, which should also suppress noise. The aim
of this study is to compare the recent methods of contrast
enhancement and elucidate an automatic method for contrast
enhancement of low-contrast satellite images which enables
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improvement of visual quality of image as well as aid in
extraction of the spatial features present in the satellite image.

2 Conventional techniques for contrast enhancement
in satellite images

Contrast enhancement techniques are widely used in the area
of satellite image processing for the enhancement  of
low-contrast satellite images. A large amount of valuable
information can be extracted from the enhanced satellite
images for further analysis. The techniques for contrast
enhancement include gray-level transformation-based tech-
niques (viz., logarithm transformation, power-law transfor-
mation, piecewise-linear transformation, etc.) and histogram
processing techniques (viz., histogram equalization (HE), his-
togram specification, etc. [1]). For gray scale image enhance-
ment, the most popular method is HE, which is based on the
assumption that a uniformly distributed gray scale histogram
will have the best visual contrast. Some other methods are the
variants of HE. The HE techniques like bi-histogram equal-
ization (BHE), block-overlapped HE, multi-scale adaptive
HE, shape preserving local histogram modification are also
derivatives of conventional techniques [2–10]. Convention-
ally, the contrast enhancement is manually performed using
spatial domain methods, as there is generally a necessity to
select specific parameters for enhancement. Therefore, con-
ventional contrast enhancement techniques have an inherent
inability for automation and also cannot be applied for broad
variety of images, especially satellite images. Moreover, if
the images are originally of low contrast—like those pertain-
ing to satellite images, then additional limitations which arise
out of employing the conventional contrast enhancement
techniques include the washed out effect, inability to pre-
serve edges, amplification of background noise, subjective
manual manipulation, non-preservation of brightness and the
inability to discern localized intensity changes. Recent stud-
ies [11–13] stress on the importance and necessity of having
automatic methods for contrast enhancement and suggest
that the gray-level grouping (GLG) and fuzzy logic-based
methods are better suited for automatic contrast enhancement
of images. The real world applications of automated image
contrast enhancement techniques are many and encompass
varied fields like medical imaging, geophysical prospecting,
seismic exploration, astronomy, camera and video process-
ing, aerial and ocean imaging, sensors and instrumentation,
optics, and surveillance.

3 Gray-level grouping

Like HE, the basic objective of GLG is to achieve a uniform
histogram for an image having discrete histograms, i.e., the

histogram components are to be redistributed uniformly over
the gray scale. However, unlike the conventional HE, which
is likely to leave too much empty space on the gray scale thus
resulting in an under or over-contrast image, the main task
in GLG technique is to utilize the gray scale in a more con-
trolled and efficient manner and spread the components of
histogram by grouping the components into a proper num-
ber of gray-level bins according to their amplitudes ensur-
ing a reduction in the number of gray bins, and allowing
the redistribution of the histogram components in a set of
gray-level bins whose amplitudes are close to each other.
This also ensures a quasi-uniform distribution of the histo-
gram components. The histogram components in different
segments of the gray scale can be grouped using different
criteria, so they can be redistributed differently over the gray
scale to meet specific processing purposes, e.g., certain appli-
cations may require different parts of the histogram to be
enhanced to different extents.

In GLG, the basic procedure is to first group the histo-
gram components of the image into a proper number of bins
according to a selected criterion, then redistribute these bins
uniformly over the gray scale, and finally ungroup the pre-
viously grouped gray-levels. To reduce the time as well as
number of iterations, a default value can be used for the total
number of gray level groups, e.g., 20, as the dynamic range of
human eye in relatively low light condition is about 1 million
(approximately 220) [14].

Therefore, there is no need of constructing the transforma-
tion function and calculating the average distance between
pixels on the gray scale for each set of gray level bins, thus
making the computation faster. Following Chen et al. [12],
the algorithm of the Fast GLG technique [12] is described as
represented in Fig. 1.

4 Fuzzy-based contrast enhancement techniques

In recent years the fuzzy set theory was applied to develop
new techniques for non-linear control systems [15, 16], image
noise removal,  image contrast improvement, etc. Fuzzy
image processing has three main stages: image fuzzification,
modification of membership values, and, if necessary, image
defuzzification. The coding of image data (fuzzification) and
decoding of the results (defuzzification) are steps that make
possible to process images with fuzzy techniques.

The main power of fuzzy image processing is in the middle
step (modification of membership values). After the image
data are transformed from gray-level plane to the member-
ship plane (fuzzification), appropriate fuzzy techniques mod-
ify the membership values. This can be a fuzzy clustering, a
fuzzy rule-based approach, a fuzzy integration approach and
so on. In the commonly used fuzzy rule-based techniques, the
histogram is used as the basis for fuzzy modeling of images
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Fig. 1 Flow chart of fast GLG, after [12]

and entropy measure is used as the basic criterion for con-
trast enhancement. Two major contributions in the field of
image enhancement using the fuzzy framework have been
established in recent years. The first contribution deals with
basic fuzzy rules for image enhancement [17–19], where in a
set of neighborhood pixels forms the antecedent and the con-
sequent clauses that serve as the fuzzy rule for the pixel to
be enhanced. The second contribution relates to a rule-based
smoothing [20] in which different filter classes are devised
on the basis of compatibility with the neighborhood.

In the fuzzy method [21] gray tone, is modeled into a fuzzy
set using a membership function. Here the image is consid-
ered as an array of fuzzy singletons having a membership
value that denotes the degree of some image property in the
range. Applying an intensification operator globally modi-
fies the membership function. Li and Yang [22] have demon-
strated an efficient way of contrast enhancement based on the
fuzzy relaxation technique with improved speed and quality.
Different orders of fuzzy membership functions and differ-
ent statistics were tried out by various researchers in order
to improve the speed and quality of contrast enhancement
based on the fuzzy logic method. While Hanmandlu et al.
[23] have proposed a new intensification operator, NINT,
which is a parametric sigmoid function for the modifica-
tion of the Gaussian type of membership on the basis of

optimization of entropy by a parameter involved in the inten-
sification operator which is suitable for gray level images;
Hanmandlu and Jha [13] proposed a Gaussian membership
function to fuzzify the image information in spatial domain
by introducing a global  contrast intensification operator
which contains three parameters, t , the intensification param-
eter, fh , the fuzzifier and µc the crossover point—for
enhancement of color images.

Fuzzy contrast depends on how far the membership func-
tions are stretched by an operator with respect to the cross-
over point µc . This turns out to be the cumulative variance
of the difference between the membership function and the
crossover point over all pixels. The desired appearance of
image is controlled by a fuzzy contrast-based quality factor
and entropy-based quality factor. Hanmandlu and Jha [13]
calculated the global contrast intensification operator param-
eters t , fh , and µc globally by minimizing fuzzy entropy of
the image information with respect to the quality factors.
Accordingly, an image of size M × N with intensity values
in the range (0 to L  1) can be considered as a collection of
fuzzy singletons in the fuzzy set relation,

I = U {µ(xmn)} = {µmn/xmn} ,
m = 1, 2, . . . , M; n = 1, 2, . . . , N.
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criterion is used to compare the results of contrast enhance-
ment methods. The Tenengrad criterion is based on gradi-
ent magnitude maximization, and is considered one of the
most robust and functionally accurate image quality mea-
sures. The Tenengrad value of an image, I is calculated from
the gradient ∇ I (x, y) at each pixel (x, y), where the partial
derivatives are obtained by a high-pass filter, e.g., the Sobel
operator, with the convolution kernels ix and i y . The gradient
magnitude is given as

S(x, y) = (i x ⊗ I (x, y))2 + (iy ⊗ I (x, y))2

and the Tenengrad criterion is formulated as

TEN = S(x, y)2 for S(x, y) > T
x y

Fig. 2 Flow chart of fuzzy logic method, after [13]

where µmn /xmn represent the membership or grade of some
property µmn of xmn , xmn is the color intensity at the (m, n)th
pixel.

The fuzzy logic method proposed by Hanmandlu and Jha
[13] for contrast enhancement is presented in Fig. 2.

5 Inter-comparison of histogram-based techniques
for contrast enhancement and performance analysis

Given the plethora of algorithms available for contrast
enhancement, the impetus for the present study was to iden-
tify which is the most suitable algorithm for use with satel-
lite images from a cross section of satellite sensors having
varying characteristics. The quality of an image is tradition-
ally measured by objectively computing the sharpness of
the image. Statistically sharpness measures were developed
based on various categories: gradient-based, variance-based,
correlation-based, histogram-based, and frequency domain-
based methods [24, 25]. Sharp images usually involve
scattered grey levels in a large dynamic range, suggesting
a large variance. Elimination of noise and computational
complexity of the algorithm are two primary concerns. Gra-
dient-based sharpness measures, especially the Tenengrad
measure, are known for their effectiveness and low compu-
tations. Moreover, their pixel-based computations facilitate
the differentiation between edge and noise pixels. Therefore,
in order to evaluate the efficacy of a particular method against
existing contrast enhancement techniques, the most well-
known benchmark image sharpness measure, the Tenengrad

where T is a threshold. The image quality is usually consid-
ered higher if its Tenengrad value is larger. However, for some
images, even though Tenengrad value for HE is larger visual
degradation can occur due to enhancement of noise also.

Lakshmanan et al. [26] made an inter-comparison of the
various variants of the histogram-based GLG methods and
the fuzzy logic method of Hanmandlu and Jha [13] to know
whether any one specific algorithm can be used for auto-
matic contrast enhancement of images from a wide variety
of sensors and therefore evaluated the results of the analy-
sis on three different images in order to ascertain which of
the algorithms are better suited across a variety of images
from different sensors and having varying characteristics.
Based on the visual quality and the Tenengrad criterion,
Lakshmanan et al. [26] concluded that the Fast GLG method
may be applied for automatic contrast enhancement across a
wide variety of images.

6 The role of crossover value (µc ) in contrast
enhancement

In order to understand the role of µc in contrast enhancement
using the fuzzy-based technique on low-contrast images, we
have considered a standard low-contrast image of ‘Mineral’
available from the IDL image processing software package
(version 6.3). The ‘mineral’ Image is a low-contrast image
with many spatial features which after enhancement can be
used for segmentation purposes for determining the various
constituents present in the ‘mineral’ image. The results of
contrast enhancement as a function of the µc values and the
corresponding histograms are presented in Fig. 3. The com-
puted quality measure represented by Tenengrad values as a
function of the crossover values (µc ) are presented in Fig. 4.
It becomes evident that the choice of µc strongly determines
the final outcome of the contrast enhancement with smaller
values yielding a washed out or blurred image and higher
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Fig. 3 a Plot of the original image. b–d The fuzzy logic-based enhanced images of low-contrast ‘Mineral’ image with crossover point (µc ) values
of 0.3, 0.36, and 0.42, respectively. Subplots e–g represent their corresponding histograms, respectively
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Logic method after

Hanmandlu and Jha [13]

Bright Image Quality Dark

Fig. 4 Plot of the Tenengrad values obtained after applying the fuzzy logic method on a standard low-contrast ‘Mineral’ image with different
crossover point (µc ) values

values yielding a darker image devoid of many of the 1. Choose a starting point Pi = (t, µc , fh)i and set i = 1.
important image features (Fig. 4). 2. Find the search direction Si as

The uniformly distributed histogram obtained for the cor-
responding optimal µc value of 0.36 is also consistent with
the basic philosophy of histogram-based techniques for con-
trast enhancement. As can be observed there were no empty

⎧
(1, 0, 0, 0, 0, . . .); i = 1, n + 1, 2n + 1, . . .⎪⎨ (0, 1, 0, 0, 0, . . .); i = 2, n + 2, 2n + 2, . . .

i
regions in the histogram corresponding to the value of 0.36,
and also there are fewer extreme peaks and valleys in the his-
togram of the enhanced image compared to the original image

⎪⎩ (0, 0, 0, 0, . . . , 1)
· · ·

; i = n, 2n, 3n, . . .

(Fig. 3). We therefore advocate that the optimal µc value to
be chosen based on the maximum Tenengrad value and then
given as input for further processing in the modified fuzzy-
based method (shown in Fig. 5) by initially determining the
optimal values of t and fh iteratively, and then selecting the
optimal value of µc corresponding to the highest Tenengrad
measure obtained during the optimization process. In order to
arrive at the optimal algorithm for ocean images from satellite
sensors, we therefore advocate a modified method for arriv-

3. For the current direction Si , find whether the function
value decreases in the positive or negative direction. For
this a small probe length, ε, also called learning factor,
and evaluate

Ji = J (Pi ), Ji = J (Pi + εSi ), and Ji = J (Pi  εSi ).+ 

If J+ 
i < Ji , Si will be the correct direction for decreas-

ing at the membership values in the Fuzzy logic method. The ing the value of Ji , and if J+ 

modification is that, unlike the iteratively determined values rect direction. If both J+
i > Ji , Si will be the cor-



of t , fh andµc as suggested by Hanmandlu and Jha [13],
we determine an optimal µc by considering the maximum
of the resultant Tenengrad values and utilize the same for
improving the image quality.

In this paper, therefore, we suitably modified the algorithm
whose details are elucidated below:

i and Ji are less than Ji , then
the minimum of the two is taken as Pi .

4. Set Pi+1 = Pi + εSi (∂ Ji /∂ Pi ).
5. Ji+1 = J(Pi+1).
6. Set i = i + 1 and go to step II. Continue this procedure

until no significant change is observed in the value of the
objective function.
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Fig. 5 Flow chart of modified
fuzzy logic method as suggested
and implemented in this study

START

Input image (RGB)

Convert RGB to HSV

Fuzzification of V fh using histogram

Initialize µc = 0.2

Optimization of Entropy
using Quality Factor Qf

Initial parameters t and fh

Obtain the optimum parameters t and fh

Defuzzification of V using µc, t and fh

Increment µc value by 0.1 Compute Tenengrad value

Satisfactory
Tenengrad

Value?

Conversion back to
RGB to display

STOP

Our modified fuzzy logic method for contrast enhance-
ment is elucidated by means of a flow chart in Fig. 5.

7 Results and discussion

The aim in satellite image processing for oceanic applica-
tions is to extract important features from an image data,
from which a description, interpretation or understanding of
the scene can be provided by the machine or by human per-
ception. Automatic enhancement of features in images from
satellite sensors is crucial from an operational perspective as
voluminous data are required to be processed in the short-
est possible time. Among the various features present in an
image the gray levels, their joint probability distributions and
spatial distributions characterize spatial features of an object.
In oceanic images the spatial features are the signatures left
by natural changes (like the changing wind pattern) or by
some moving platform like ship. A problem of fundamental

importance in ocean image analysis is extraction of these
signatures efficiently and quickly. The impetus for this study
therefore was to evaluate the various histogram-based algo-
rithms available for contrast enhancement in order to arrive
at an optimal algorithm which is capable of extracting the
spatial features from such low-contrast images. In this paper
we applied the various methods for contrast enhancement,
i.e., standard HE, adaptive HE, fast GLG method, fuzzy logic
method, and the modified fuzzy-based technique on typical
low-contrast satellite images of the ocean obtained from dif-
ferent sensors.

As we were interested in inter-comparison of the con-
ventional contrast enhancement techniques with the recent
GLG and fuzzy-based techniques on low-contrast images,
and as there no standard low-oceanic images available, we
initially applied all the techniques on a low-contrast stan-
dard gray scale image pertaining to the picture of a ‘Mineral’
image taken from the image processing package IDL (ver-
sion 6.3). The original ‘mineral’ image is shown in Fig. 3a.
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Fig. 6 a The original image of
size 216× 288. b–f The
enhanced images of Mineral
Image after applying the
histogram equalization, adaptive
histogram equalization with
exponential distribution, GLG,
fuzzy method [13] (with optimal
µc = 0.32) and the modified
fuzzy methods (with optimal
µc = 0.36), respectively.
g–l The corresponding
histograms, respectively.
Tenengrad values are shown in
the top right corner of each
image. As can be seen from the
Tenengrad values the visual
quality is best for the modified
fuzzy-based method with an
improvement of 22% as
compared to the fuzzy method
of [13], and 5% as compared to
the FGLG method
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Fig. 7 a, b The original and fuzzy logic-based (µc = 0.4) enhanced
images of low-contrast Satellite Image I, respectively. Features that
became evident after contrast enhancement are (i) shoreline and beach
(represented by red arrows), (ii) ships at sea (represented by red circles,
the second red circle from the left also shows the wake of the mov-
ing ship), (iii) cloud cover over sea (represented by yellow circle) and
(iv) part of a road (represented by smaller yellow circle on the land).
The quality of the image (Tenengrad value) improved by 23% with a
computation time of approx. 8 s on the original satellite sub-image of
size 940× 1267. The satellite sensor was IRS 1C pan CCD. The image
was of the west coast of India

In addition to visual quality, the criterion employed for per-
formance analysis is the Tenengrad measure. Figure 6 shows
the results of contrast enhancement on the original along
with their respective histogram distributions and Tenengrad
values for the various methods compared. As is apparent
from Fig. 6 the visual quality and the Tenengrad quantifica-
tion results indicate that the modified fuzzy-based technique
yields better results for automated contrast enhancement.

Figure 7a shows the original low-contrast sub-image from
IRS P4 OCM satellite sensor with a medium resolution.
The image pertains to the West Coast of India and is

Fig. 8 a, b The original and fuzzy logic-based (optimal µc = 0.4)
enhanced images of low-contrast Satellite Image II, respectively. Fea-
tures that became evident after contrast enhancement are (i) oceanic
front (represented by red arrow), (ii) ships at sea (represented by red
circles), (iii) the wake of the moving ship (represented by blue circle)
and (iv) an almost invisible ship with its wake (represented by dashed
red circle). The quality of the image (Tenengrad value) improved by
228% with a computation time of approx. 6 s on the original satellite
sub-image of size 806× 1127. The satellite sensor was ERS SAR. The
image was of the Gulf of Oman

predominantly covered by clouds making visual interpreta-
tion very difficult as most of the features remain invisible.
This is a typical image due to environmental degradation and
is very common for most seasons of the year. The image looks
under exposed with low signal to noise ratio (noise assumed
here is cloud cover). As such images are most common from
optical satellite sensors the utility of extraction of features
from such images becomes very important. Figure 7b shows
the results of the automatic contrast enhancement using the
modified Fuzzy logic method, indicating a visual quality
improvement and also an increase in the Tenengrad value
by 23%. As explained in the figure many important features
in the image can now be discerned enabling more meaningful
information extraction.
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Fig. 9 a, b The original and fuzzy logic-based (optimal µc = 0.5)
enhanced images of low-contrast Satellite SAR Image, respectively,
during relatively calm sea conditions. Features that became evident after
contrast enhancement were the small fishing vessels (ships) circled in
red and the quality of the image. (Tenengrad value) improved by 289%.
The image was taken over Arabian Sea by a RADRSAT SAR sensor.
c, d The original and fuzzy logic-based (optimal µc = 0.4) enhanced
images of low-contrast Satellite SAR Image, respectively, during rel-
atively rough sea conditions (i.e., during the presence of strong winds
which generate rough sea and high waves). The original image in this
case is sub-image of 155×272 pixel size, cropped from the upper right

corner of the image shown in Fig. 8. It is generally believed that rough
sea gives rise to worsening specular reflections in a SAR image and
therefore greater difficulty in detection of moving targets at sea (ships).
However, one can observe that d, even when strong sea swell is prevail-
ing the contrast enhanced image in d clearly enables one to detect the
ships and the ship wakes (circled in red with ship appearing as a bright
reflection and the wake appearing as a dark line). The quality of the
image (Tenengrad value) improved by 228% with a computation time
of approx. 6 s on the original satellite sub-image of size 806 × 1127.
The satellite sensor was ERS SAR. The image was taken over the Gulf
of Oman

Synthetic aperture radar (SAR) is a coherent imaging
sensor, recording both the amplitude and the phase of the
back-scattered radiation. Because of this, it suffers from a
noise-like phenomenon known as speckle. Each resolution
cell of the system contains many scatterers; the phases of the
return signals from these scatterers are randomly distributed
and speckle is caused by the resulting interference, which
gives the images a grainy appearance. This imposes a sig-
nificant limitation on the accuracy of the measurements that
can be made: the brightness of a pixel is determined not only
by properties of the scatterers in the resolution cell, but also
by the phase relationships between the returns from those
scatterers. In single-look images, the uncertainty is equal to

the expected value, and the problem is generally overcome
to some degree by averaging to produce multi-look images.

Synthetic aperture radar images can also be de-speckled
using advanced filtering techniques. Each pixel in a SAR
image represents the back-scattered radiation from an area
in the imaged scene. A large pixel value (bright) represents
a strong received signal. The strength of the received sig-
nal depends on many parameters, including the radar wave-
length and the relative size of the scatterers, incidence angle
and polarization of the radar pulses, topography and water
content of the area being imaged, and the direction of the
flight path of the SAR sensor. Ship detection by SAR has
become a very important endeavor in the past few years and
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numerous algorithms to assist in identification have been
developed. The appearance of ship or ship wakes in radar
images depends on various parameters: the shape of the plat-
form, the sea state, the observation geometry and the
characteristics of the radar, like the carrier frequency, the
polarization, and the observation configuration. Depending
on the configuration, one or several of the following features
are visible. First, the wake is nearly always characterized by a
dark streak behind ships in SAR images. This dark trail orig-
inates from the turbulent vortex created by the ship, which
reduces the roughness of the sea. The linear features are
of primary importance when wake detection is considered,
because they allow for the use of line detection algorithms.
However, the detection task is complicated by the presence
of multiplicative noise (speckle), which is prominent when
the sea state is high, since it hides the features to be extracted
(i.e., the wake and, or the ship).

Most of the algorithms used begin with the Radon trans-
form, since its properties make it particularly suitable to line
detection in speckle noise. The Radon transform is applied
to the raw, noisy image, and the features visibility is then
optimized by using subsequent processing methods such as
Wiener filtering. Other approaches rely on multi-scale anal-
ysis, such as the wavelet transforms, which enable in extract-
ing features by assuming that objects such as wakes display
a certain correlation between adjacent scales, unlike noise.
Another approach may be to use the Hough transform, which
is related to the Radon transform in its principle and can be
faster to compute, but which is not as robust to noise; and the
approach requires de-speckling the image beforehand. SAR
is useful in ship detection on development of sophisticated
algorithms for image analysis and information that can be
extracted from SAR includes location of ships, their speed,
heading and sometimes their size class and approximate type.

In recent years, however, in order to preserve the full res-
olution and extract information regarding smaller areas of
interest, SAR speckle in marine single look complex images
is investigated by means of a physically consistent model
[27], with the belief that marine speckle contains information
that can be exploited once an appropriate physical model is
established, thus helping in the detection of small dark areas
(oil spill) and small dominant scatterers (ships).

Against this background, we wished to see whether a sim-
ple contrast enhancement of a SAR or an optical image can
result in any incremental improvement of the visual quality
(and in speckle noise reduction) vis-à-vis the ship (and or
wake) detection problem without resorting to any sophisti-
cated algorithms and speckle modeling.

Figure 8a shows the raw sub-image of ERS 1 satellite SAR
sensor with a medium spatial resolution. The image is cover-
ing the ocean in Gulf of Oman. The raw image is featureless
with low contrast and partially noisy especially in the lower
left corner of the image, an artifact of the sensing mechanism

Fig. 10 a, b The original and fuzzy logic-based (µc = 0.45) enhanced
images of low contrast but high-resolution Satellite Image III, respec-
tively. Features that have become more prominent after contrast
enhancement are (i) the transverse waves  and the turbulent stern
wake in the lee side of the moving ship (represented by blue arrows,
(ii) small ship at sea (represented by red circles),  (iii) the clear
Kelvin wake structure due to the moving ship (represented by blue
circle) and (iv) an almost invisible ship with its wake (represented by
dashed red circle) and (iv) the divergent cusp waves (represented by the
blue circle).The quality of the image (Tenengrad value) improved by
22% with a computation time of 5 s on the original satellite sub-image
of size 691 × 978. The satellite sensor was high-resolution IKONOS
Pan CCD. The image was of the east coast of India

and the subsequent processing. Figure 8b shows the visually
improved image where many features are discernible. The
Tenengrad value has also considerably increased by 228%.
Again, as explained in the figure many important features in
the image can now be discerned enabling more meaningful
information extraction.

Figure 9a shows the raw sub-image of Radarsat SAR
sensor with a medium spatial resolution. The image is cov-
ering the ocean in Arabian Sea. The raw image was fea-
tureless with low contrast taken during calm sea conditions.
Figure 9b shows the visually improved image where many
small fishing vessels (ships) are discernible. The Tenengrad
value has also considerably increased by 289%. Figure 9c
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shows the raw ERS SAR sub-image taken during stormy
weather (with more speckle noise) and 9d shows the visu-
ally improved image where both ships and their wakes are
discernible inspite of the higher speckle noise in the raw
image. The Tenengrad value has also considerably increased
by 228%.

Figure 10a shows the original sub-image from a high-
resolution optical satellite sensor, IKONOS. The image cov-
ers the Bay of Bengal region and the quality of the image
is good. Figure 10b shows the contrast enhanced image with
substantial improvement in visual quality as well as the Ten-
engrad measure by 22%. As explained in the figure many
important features in the image can now be discerned
enabling more meaningful information extraction.

Therefore, our study clearly indicates that the modified
fuzzy logic method  can be used for automatic contrast
enhancement of low-contrast satellite images from different
sensors to extract meaningful information on features present
in the images.

8 Conclusion

An inter comparison of the conventional histogram-based
contrast enhancement techniques (like HE, adaptive HE)
along with the recent histogram-based GLG method (after
[12]), the Fuzzy Logic method (after [13]) and the modified
fuzzy logic method as suggested in this paper was carried out
to ascertain which of these methods is better suited for auto-
matic contrast enhancement of satellite images of the ocean.
The different methods were applied on a variety of oceanic
images and it is concluded that the modified Fuzzy Logic
method as elucidated in this paper has improved the visual
quality as well yielded a higher Tenengrad measure of quality.
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